
International Journal on Artificial Intelligence Tools
Vol. XX, No. X (2006) 1–43
 World Scientific Publishing Company

1

A LANGUAGE AND ENVIRONMENT FOR
ANALYSIS OF DYNAMICS BY SIMULATION

Tibor Bosse

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

tbosse@cs.vu.nl

Catholijn M. Jonker

Radboud Universiteit Nijmegen, Nijmegen Institute for Cognition and Information,
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

C.Jonker@nici.ru.nl

Lourens van der Meij

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

lourens@cs.vu.nl

Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

treur@cs.vu.nl

This article presents the language and software environment LEADSTO that has been developed to
model and simulate dynamic processes in terms of both qualitative and quantitative concepts. The
LEADSTO language is a declarative order-sorted temporal language, extended with quantitative
notions like integer and real. Dynamic processes can be modelled in LEADSTO by specifying the
direct temporal dependencies between state properties in successive states. Based on the LEADSTO
language, a software environment was developed that performs simulations of LEADSTO
specifications, generates data-files containing traces of simulation for further analysis, and constructs
visual representations of traces. The approach proved its worth in a number of research projects in
different domains.

Keywords: Simulation; causal relations.

1. Introduction

In simulations, various formats are used to specify the basic mechanisms or causal
relations within a process1, 2, 3, 4, 5, 6, 7, 8, 9. Depending on the domain of application, such
basic mechanisms need to be formulated quantitatively or qualitatively. Usually, within a
given application, explicit (temporal) boundaries can be given in which the mechanisms
take effect. This is the case, for example, in the following statement: “ from the time of
planting of an avocado pit, it takes 4 to 6 weeks for a shoot to appear” . Another example
is: “with a lower threshold of 5˚C, alfalfa takes 555 to 890 growing degree-days to

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

2

bloom”. Here, a growing degree-day is a day in which the mean daily temperature is one
degree above the base temperature of that particular crop. Yet another example, in the
domain of psychology, is the following statement: “The reaction time of a healthy
adolescent lies between 180 and 220 ms” .

In all of the above examples, in order to simulate the process that takes place, it is
important to model its dynamics. When considering current approaches to modelling
dynamics, the following two classes can be identified: logic-oriented modelling
approaches, and mathematical modelling approaches, usually based on difference or
differential equations. Logic-oriented approaches are good for expressing qualitative
relations, but less suitable for working with quantitative relationships. Mathematical
modelling approaches (e.g., Dynamical Systems Theory3, 8, 9), are good for the
quantitative relations, but expressing conceptual, qualitative relationships with them is
hard to impossible. In this article, the Language and Environment for Analysis of
Dynamics by SimulaTiOn (LEADSTO) is proposed as a language that combines the
possibilities of expressing qualitative and quantitative relations.

In Section 2, a formal definition of the LEADSTO language (in terms of both
structure and semantics) is given, and it is shown how the language can be used to model
dynamics. Section 3 provides examples of existing case studies in which LEADSTO has
been applied. Section 4 describes the tools that support the LEADSTO modelling
environment in detail. In particular, the LEADSTO Property Editor and the LEADSTO
Simulation Tool are discussed. Section 5 compares the approach to related modelling
approaches, and Section 6 is a conclusion.

2. The LEADSTO Language

Dynamics can be modelled in different forms. For example, the Dynamical Systems
Theory (DST3, 8, 9), which is based on the area within Mathematics called calculus,
advocates to model dynamics by continuous state variables and changes of their values
over (continuous) time. In particular, systems of differential or difference equations are
used for this type of modelling. This may work well in applications where the world
states can be modelled (in a quantitative manner) by real-valued state variables, and
where the world’s dynamics shows continuous changes in these world states, which can
be modelled by mathematical relationships between real-valued variables.

However, not for all applications dynamics can be modelled in a quantitative manner
as required for DST. Sometimes qualitative changes form an essential aspect of the
dynamics of a process. For example, to model the dynamics of reasoning processes,
usually a quantitative approach will not work. In such processes, states are characterised
by qualitative state properties, and changes by transitions between such state properties.
For such applications, often qualitative, discrete modelling approaches are advocated,
such as variants of modal temporal logic10. However, using such non-quantitative
methods, the more precise timing relations are lost too.

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

3

2.1. Structure of the LEADSTO Language

The LEADSTO language enables one to model direct temporal dependencies between
two state properties in successive states, also called dynamic properties. A specification
of dynamic properties in LEADSTO format has as advantages that it is executable and
that it can often easily be depicted graphically. For the approach described in this paper,
the choice has been made to consider time as continuous, described by real values, but for
state properties, both quantitative and qualitative variants can be used. The approach
subsumes approaches based on simulation of differential or difference equations, and
discrete qualitative modelling approaches, but also combines them. For example, it is
possible to model the exact (real-valued) time interval for which some qualitative
property holds. Moreover, the relationships between states over time are described by
either logical or mathematical means, or a combination thereof. This will be explained
below in more detail.

Dynamics is considered as evolution of states over time. The notion of state as used
here is characterised on the basis of an ontology defining a set of properties that do or do
not hold at a certain point in time. Ontologies are specified as signatures in order-sorted
predicate logic, i.e., sets of sorts and subsort relations, constants in sorts, functions and
predicates over sorts11.

Definition (State Properties)
Let Ont be a given ontology Ont.
a) The set of state atoms (or atomic state properties) based on Ont is denoted by

APROP(Ont), and the set of state ground atoms by GAPROP(Ont).

b) The set of state properties STATPROP(Ont) based on Ont consists of the propositions
that can be made (using conjunction, negation, disjunction, implication) from the
atoms. Moreover, GSTATPROP(Ont) is the subset of ground state properties, based on
ground atoms. A subset of the set of state properties is the set CONLIT(Ont) of
conjunctions of literals (atoms or negations of atoms).

The textual LEADSTO format is defined as follows.

Definition (LEADSTO format)
Let a state ontology Ont be given.
a) Any expression for Ont of the form

∀x1, ..., xn α →→e, f, g, h β
where α (the antecedent) and β (the consequent) are state properties in CONLIT(Ont), with
variables among x1, .., xn, and e, f, g, h non-negative real numbers, is a LEADSTO
expression. When no variables nor quantifiers occur in this expression, it is called a
LEADSTO ground expression.
b) Any expression

holds_during_interval(α, t1, t2)

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

4

with α in and t1 and t2 time points with t1<t2, is a LEADSTO expression.
c) Every LEADSTO expression either is of the type as in a) or of the type as in b). A
LEADSTO specification is a set of LEADSTO expressions.

Informally, for the case without variables, a LEADSTO expression α →→e, f, g, h β means
(also see Figure 1):

If state property α holds for a certain time interval with duration g, then after some delay
(between e and f) state property β will hold for a certain time interval of length h.

α
β

t1

e

g h

t2

time

f
t0

Fig. 1. The timing relationships.

An example dynamic property in the LEADSTO format is:

observes(agent_A, food_present) →→ 2, 3, 1, 1.5 belief(agent_A, food_present)

This property expresses the fact that, if agent A observes that food is present during 1
time unit, then after a delay between 2 and 3 time units, agent A will have the belief that
food is present during 1.5 time units. The expression holds_during_interval(α, t1, t2) means
that state property holds in the interval [t1, t2).

Within the LEADSTO language it is possible to use sorts, variables over sorts, real
numbers, and mathematical operations, such as in the property (where x is a constant):

∀v has_value(x, v) →→ e, f, g, h has_value(x, v*0.25)

The LEADSTO format also has a graphical form in a causal graph-like format, by

indicating state properties by circles and LEADSTO relationships by arrows, such as the
example in Figure 2. This figure depicts a simple high-level description of an agent’s
eating behaviour in terms of LEADSTO relationships. Here the dotted line indicates the
borderline between an agent and the external world. The arc connecting the two arrows
indicates that the conjunction of two state properties is used in the antecedent of the
LEADSTO relationship. This simple form leaves out the timing parameters e, f, g, h. A
more detailed form can be obtained by placing the timing parameters in the picture as
labels for the arrows.

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

5

Fig. 2. Example of a graphical representation of two LEADSTO properties.

2.2. Semantics of the LEADSTO Language

The LEADSTO language is a temporal language. The semantics of the language is based
on three-valued temporal models, i.e., traces with three-valued states. This is made
precise in the following definitions.

Definition (State and Trace)
Let Ont be a state ontology.
a) A state S is an indication of which ground atoms are true, which are false, and which
undefined, i.e., a mapping S: GAPROP(Ont) → {true, false, undefined}. The set of states for

ontology is denoted by STATES(Ont).

A state is called two-valued or complete with respect to an ontology Ont' (subset of Ont)

when undefined does not occur for atoms in Ont'.
b) A trace or trajectory γ over state ontology Ont is a time-indexed sequence of states
over Ont (where the time frame T is formalised by the real numbers), i.e., γ is a mapping

γ: T → STATES(Ont).
A trace is called two-valued or complete with respect to an ontology Ont' (subset of Ont)

when all of its states are two-valued, i.e., undefined does never occur for atoms in Ont'.

Definition (Satisfaction)
Let Ont be a state ontology.
a) If S is a state for ontology Ont, and α is a ground state property from GSTATPROP(Ont),
then by S |= α (to be read as S satisfies α, or α is true or holds in S) the strong Kleene
satisfaction relation for Partial Logic12 is denoted.
b) A LEADSTO ground expression

α →→e, f, g, h β
holds for a trace γ, denoted by

γ |= α →→e, f, g, h β
if

∀t1: [∀t [t1–g ≤ t < t1 � γ(t) |= α] � ∃d [e ≤ d ≤ f & ∀t' [t1+d ≤ t' < t1+d+h � γ(t') |= β]

c) A LEADSTO expression
∀x1, ..., xn α →→e, f, g, h β

holds for a trace γ (or γ satisfies ∀x1, ..., xn α →→e, f, g, h β), denoted by

intention(agent_A, eat_food)

belief(agent_A, food_present)
to_be_performed(agent_A, eat_food)

observes(agent_A, food_present)

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

6

γ |= ∀x1, ..., xn α →→e, f, g, h β
if all ground instances of α →→e, f, g, h β hold for γ.
d) A LEADSTO expression holds_during_interval(α, t1, t2) holds for a trace γ, denoted by
γ |= holds_during_interval(α, t1, t2) if

∀t [t1 ≤ t < t2 � γ(t) |= α]
e) A trace γ satisfies a LEADSTO specification if it satisfies all expressions in this
specification.

The state formulae α, β occurring in LEADSTO ground expressions have a relatively

simple structure. Strong Kleene semantics for them is defined by (where α, α1, …, αn are
ground atoms):

S |= α1 ∧ ∧ αn ⇔ S |= α1 ∧ ∧ S |= αn
S |= ¬ α ⇔ S(α) = false

S |= α ⇔ S(α) = true

2.3. The Use of LEADSTO Specifications for Simulation

An important use of the LEADSTO language is as a specification language for simulation
models. As indicated above, on the one hand LEADSTO expressions can be considered
as logical expressions with a declarative, temporal semantics, showing what it means that
they hold in a given trace. On the other hand they can be used to specify basic
mechanisms of a process and to generate (in general three-valued) traces that satisfy the
formulae, similar to Executable Temporal Logic1, 13, 4, 5, 6, 7, 14, 15, 16, 17. A temporal formula
in executable format is one according to the pattern

 past and current implies future

Here the time frame is assumed to be discrete. A simple example of an executable
temporal formula is (with C the current operator and X the next operator)

Ca ∧ Cb → Xc

which states that always if in a state the state properties a and b hold, then in the next
state property c holds. Simulation based on such a temporal formula can be performed by
executing it in the following inductive sense:

1. Check the antecedents on the last generated state of the simulation trace

If a trace has been generated up to time point t, determine whether the conditions
a and b hold in the state at t.

2. Collect the consequents for those antecedents that hold at the last generated state
Examining in an exhaustive manner all temporal formulae in executable format
defining a specification, a number of properties for the state at time t + 1 are
determined; e.g., if a and b hold, then for the state at the next time point t + 1 the
property c is to hold.

3. Build the next state by derived state properties

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

7

All collected consequents together provide a (partial) description of the next state
at time t + 1.

4. Complete the next state
By some form of completion (e.g., by a closed world assumption, making state
properties false that are not derivable in a positive manner), this description can
be made complete, obtaining the complete next state of the trace for t + 1.

Note that in steps 2. and 3. it is assumed that no contradictory consequents are derived.
The modeller has the responsibility to ensure this. An advantage of this paradigm of
Executable Temporal Logic is that simulation models are specified not in an algorithmic
manner, but in a declarative logical manner. The relation between the specification and
the constructed trace is that the trace is a model (in the logical sense) of the theory
defined by the specification, i.e., all temporal formulae of the specification hold in the
trace. A disadvantage of the discrete time frame assumption is that it does not allow
specification of simulation models where variable real-valued time periods between the
transitions play a role; however in LEADSTO this is possible. The procedure used for
simulation of a LEADSTO specification is a variation on the procedure for Executable
Temporal Logic shown above. For example, for step 1 not the last generated state is
taken, but the past time interval is considered. Moreover, in step 3 and 4. the state
properties are fixed for certain future time intervals instead of one state.

Not every trace satisfying the LEADSTO specification is generated in this way.
First, generated traces satisfy the finite variability property, which expresses, informally
stated, that between any two time points t0, t1 only a finite number of state changes
occurs, or, equivalently, for the interval from t0 to t1 there is a minimal duration δ, such
that between states always persist with duration at least δ. This is defined by:

Definition (Finite Variability)
A trace γ has finite variability if
∀t0, t1>t0 ∃δ>0
 [∀t [t0 ≤ t & t ≤ t1] � ∃t2 [t2 ≤t & t<t2+δ & ∀t3 [t2 ≤ t3 & t3 ≤ t2+δ]] � γ(t3) = γ(t)]

Second, another element that can play a role in the execution of a LEADSTO
specification as a simulation model is the notion of trace completion, or temporal
completion, based on a Closed World Assumption. This is based on the following
concept:

Definition (State Completion)
Let Ont, Ont’ be state ontologies with Ont’ a subset of Ont and S a state for Ont.
The completion of state S with respect to Ont' is the state c(S, Ont') defined by

c(S, Ont')(α) = true if S(α) = true
 c(S, Ont')(α) = false if S(α) = false

c(S, Ont')(α) = false if α is in Ont' and S(α) = undefined
for all ground atoms α for Ont.

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

8

State completion can be applied (as an option) during execution of a LEADSTO
specification, for parts of the state ontology, whenever for certain atoms in a state no
truth values true or false are entailed by the specification on the basis of the previous
states. In such a case it is possible to generate traces that are complete (two-valued) with
respect to certain atoms, and satisfy the expressions in the specification. Note that this is
not the same as taking a three-valued trace, and completing parts of its states: in this case
it would be possible that certain LEADSTO expressions are no longer satisfied (for
example, because some antecedent would become satisfied but not the consequent).

3. Applications

The LEADSTO environment has been used in a number of research projects in different
domains. In this section, some of these projects will be summarised, with special
attention for the role of LEADSTO in them. In general, these research projects can be
divided into two categories: those focussing on single-agent dynamics (cognitive
modelling), and those focussing on multi-agent dynamics (social modelling).

Examples of single-agent (or cognitive) processes that have been modelled using
LEADSTO are human reasoning processes, eating regulation processes, and conditioning
processes. Examples in multi-agent (or social) domains are ant colonies, organisations
(e.g., a factory), and component-based software systems. In general, the research goal in
these kinds of projects was to analyse the process under investigation by creating a
detailed model of its dynamics. LEADSTO was used to formalise the basic mechanisms
of these processes at a high level of abstraction. Since the LEADSTO format is
executable, such mechanisms can be and have been used to generate simulation traces
without additional programming.

Below, for three different domains, its formalisation in terms of dynamic properties
and the resulting simulation model will be discussed. Section 3.1 describes a model of an
adaptive dynamical system for eating regulation disorders18. Section 3.2 describes a
model of human trace conditioning19. Section 3.3 describes the dynamics of an ant
colony20. Thus, the first two examples address single-agent processes; the third example
addresses a multi-agent process.

3.1. Eating Regulation Processes

The psychologist Martine Delfos created an adaptive dynamical model that describes
normal functioning of eating regulation under varying metabolism levels. In one of her
books21, Delfos uses this model as a basis for classification of eating regulation disorders,
and of diagnosis and treatment within a therapy. Reasoning about the dynamic properties
of this model (and disturbances of them) is performed in an intuitive, conceptual, but
informal manner. In previous work18, this model was formalised in LEADSTO, and some
simulations have been generated, both for wellfunctioning situations and for different
types of malfunctioning situations that correspond to the first phase of well-known
disorders such as anorexia (nervosa), obesitas, and bulimia. The local properties used for
the formalisation are shown in Appendix A. Some examples are shown below:

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

9

LP6 (Weight through balance of amount eaten and energy used)
Local property LP6 expresses a simple mechanism of how weight is affected by the day balance of amount
eaten and energy used. Here γ is a fraction that specifies how energy affects the weight in kilograms.
Formalisation:
∀E1,E2,W:REAL
day_amount_eaten(E1) and day_used_energy(E2) and weight(W) →→0,0,1,25 weight(W + γ * (E1 – E2))

LP7 (Adaptation of amount to be eaten)
Local property LP7 expresses a simple (logistic) mechanism for the adaptation of the eat norm based on the day
amount of energy used. The eat norm indicates the amount of food that should be eaten in order to compensate
for the amount of energy used on a particular day. Note that a fictive unit measure is used here, but this could
easily be replaced by a more realistic measure (e.g., kilocalories). Moreover, α is the adaptation speed, β is the
fraction of E that is the limit of the adaptation; normally β = 1. Formalisation:
∀E,N:REAL
day_used_energy(E) and eat_norm(N) and time(24) →→0,0,1,25 eat_norm(N + α * N * (1 - N/βE))

In the above example, the time units represent hours. Thus, dynamic property LP6
states, for example, that “if the antecedent holds for 1 hour, then the consequent will hold
for 25 hours, with a delay of 0 hours”. Note that these dynamics properties combine real-
valued, quantitative concepts with conceptual, qualitative concepts. In Figure 3 an
example of a resulting simulation trace is shown. Here, time is on the horizontal axis; the
state properties are on the vertical axis. A dark box on top of the line indicates that the
property is true during that time period, and a lighter box below the line indicates that the
property is false. For example, the state property eat_norm(6) is true from time point 0 to
25. This example illustrates the pattern of a person with anorexia. As the figure shows,
the person has an eat norm (of 6 units) that is too low for the amount of energy used (of 8
units) per day. After a while, the eat norm converges a little bit to the amount of energy
used, but this adaptation is not enough. The picture clearly demonstrates the
consequences: the subject continuously eats an amount of food that is too low, compared
to what she needs. Therefore, weight drops from 60 kilograms to 59.6 to 59.4, and this
decreasing trend continues.

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

10

Fig. 3. Example simulation trace of the eating pattern of a person with anorexia.

3.2. Conditioning Processes

Research into conditioning is aimed at revealing the principles that govern associative
learning. An important issue in conditioning processes is the adaptive timing of the
conditioned response to the appearance of the unconditioned stimulus. This feature is
most apparent in an experimental procedure called trace conditioning. In this procedure,
a trial starts with the presentation of a warning stimulus (S1; comparable to a conditioned
stimulus). After a blank interval, called the foreperiod, an imperative stimulus (S2,
comparable to an unconditioned stimulus) is presented to which the participant responds
as fast as possible. The reaction time to S2 is used as an estimate of the conditioned state
of preparation at the moment S2 is presented. In this case, the conditioned response
obtains its maximal strength, here called peak level, at a moment in time, called peak
time, that closely corresponds to the moment the unconditioned stimulus occurs.

Machado developed a basic model that describes the dynamics of these conditioning
processes in terms of differential equations22. The structure of this model is shown in

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

11

Figure 4. The model posits a layer of timing nodes and a single preparation node. Each
timing node is connected both to the next (and previous) timing node and to the
preparation node. The connection between each timing node and the preparation node
(called associative link) has an adjustable weight associated to it. Upon the presentation
of a warning stimulus, a cascade of activation propagates through the timing nodes
according to a regular pattern. Owing to this regularity, the timing nodes can be likened
to an internal clock or pacemaker. At any moment, each timing node contributes to the
activation of the preparation node in accordance with its activation and its corresponding
weight. The activation of the preparation node reflects the participant's preparatory state,
and is as such related to reaction time.

Fig. 4. Structure of Machado’s conditioning model.
(adjusted from Machado22)

The weights reflect the state of conditioning, and are adjusted by learning rules, of
which the main principles are as follows. First, during the foreperiod extinction takes
place, which involves the decrease of weights in real time in proportion to the activation
of their corresponding timing nodes. Second, after the presentation of the imperative
stimulus a process of reinforcement takes over, which involves an increase of the weights
in accordance with the current activation of their timing nodes, to preserve the
importance of the imperative moment. Machado describes the more detailed dynamics of
the process by a mathematical model (based on linear differential equations), representing
the (local) temporal relationships between the variables involved. For example,

d/dt X(t,n) = λX(t,n-1) - λX(t,n)
expresses how the activation level of the n-th timing node X(t+dt,n) at time point t+dt
relates to this level X(t,n) at time point t and the activation level X(t,n-1) of the (n-1)-th
timing node at time point t. Similarly, as another example,

d/dt W(t,n) = -αX(t,n)W(t,n)
expresses how the n-th weight W(t+dt,n) at time point t+dt relates to this weight W(t,n) at
time point t and the activation level X(t,n) of the n-th timing node at time point t.

In previous work19, LEADSTO has been used to specify Machado’s mathematical
model in a logical, declarative manner. The complete model is shown in Appendix B.
Part of it shown below:

LP5 (Extinction of associative links)

S1
Timing nodes with
activation level X

Preparation node

Associative links of
variable weight W

Response strength R

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

12

LP5 expresses the adaptation of the associative links during extinction, based on their own previous state and the
previous state of the corresponding timing node. Here, α is a learning rate parameter. Formalisation:
∀u,v:REAL ∀n:INTEGER
instage(ext) and X(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-α*u*step))

LP6 (Reinforcement of associative links)
LP6 expresses the adaptation of the associative links during reinforcement, based on their own previous state
and the previous state of Xcopy. Here, β is a learning rate parameter. Formalisation:
∀u,v:REAL ∀n:INTEGER
instage(reinf) and Xcopy(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-β*u*step) + β*u*step)

LP7 (Persistence of associative links)
LP7 expresses the persistence of the associative links at the moments that there is neither extinction nor
reinforcement. Formalisation:
∀v:REAL
instage(pers) and W(n, v) →→0,0,1,1 W(n, v)

An example simulation trace that has been generated on the basis of this model is
shown in Figure 5. The upper part of the figure shows conceptual, qualitative information
(e.g., the state properties that indicate the stage of the process); the lower part shows
more quantitative concepts, i.e., the state properties involving real numbers with
changing values over time (e.g., the preparation level of the person). To limit complexity,
only a selection of important state properties was depicted. In the lower part, all
instantiations of state property r(X) are shown with different (real) values for X (shown on
the vertical axis), indicating the participant’s preparation level to respond to a stimulus.
For example, from time point 1 to 9, the level of preparation is 0.0, and from time point 9
to 10, the level of preparation is 0.019. Figure 5 describes the dynamics of a person that is
subject to conditioning in an experiment with a foreperiod of 6 time units. As can be seen
in the trace, the level of response-related activation increases on each trial. Initially, the
subject is not prepared at all: at the moment of the imperative stimulus (S2), the level of
response is 0.0. However, already after two trials a peak in response level has developed
that coincides exactly with the occurrence of S2.

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

13

e6

e9

e7

e10

e8

e5

e4 e3 e2

e1

A

B C D

F

 E

 H G

Fig. 5. Example simulation trace of a conditioning process.

3.3. Ant Colonies

In this section, an example LEADSTO specification is given for a multi-agent domain: an
ant colony20. The world in which the ants live is described by a labeled graph as depicted
in Figure 6. Locations are indicated by A, B,… , and edges by E1, E2,… The ants move
from location to location via edges; while passing an edge, pheromones are dropped. The
objective of the ants is to find food and bring this back to their nest. In this example there
is only one nest (at location A) and one food source (at location F).

Fig. 6. An ants world.

The dynamics of this system have been formalised in LEADSTO, and some
simulations have been generated for different situations. The LEADSTO expressions that
have been used for the simulation are shown in Appendix C. A subset of them is shown
here:

LP5 (Selection of Edge)
This property models (part of) the edge selection mechanism of the ants. It expresses that, when an ant a
observes that it is at location l coming from edge e0, and there are two other edges connected to that location,
then the ant goes to the edge with the highest amount of pheromones. Formalisation:
∀a:ANT ∀l,l1,l2:LOCATION ∀e0,e1,e2:EDGE ∀i1,i2:REAL
observes(a, is_at_location_from(l, e0)) and neighbours(l, 3) and connected_to_via(l, l1, e1) and observes(a, pheromones_at(e1, i1))
and connected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, i2)) and e0 ≠ e1 and e0 ≠ e2 and e1 ≠ e2 and i1 > i2 →→0,0,1,1
to_be_performed(a, go_to_edge_from_to(e1, l1))

LP9 (Dropping of Pheromones)
This property expresses that, if an ant observes that it is at an edge e from a location l to a location l1, then it
will drop pheromones at this edge e. Formalisation:
∀a:ANT ∀e:EDGE ∀l,l1:LOCATION
observes(a, is_at_edge_from_to(e, l, l1)) →→0,0,1,1 to_be_performed(a, drop_pheromones_at_edge_from(e, l))

LP13 (Increment of Pheromones)
This property models (part of) the increment of the number of pheromones at an edge as a result of ants
dropping pheromones. It expresses that, if an ant drops pheromones at edge e, and no other ants drop
pheromones at this edge, then the new number of pheromones at e becomes i*decay+incr. Here, i is the old
number of pheromones, decay is the decay factor, and incr is the amount of pheromones dropped.
Formalisation:
∀a1,a2,a3:ANT ∀e:EDGE ∀l1:LOCATION ∀i:REAL
to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and [∀l2:LOCATION not to_be_performed(a2,
drop_pheromones_at_edge_from(e, l2))] and [∀l3:LOCATION not to_be_performed(a3, drop_pheromones_at_edge_from(e, l3))]
and a1 ≠ a2 and a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i) →→0,0,1,1 pheromones_at(e, i*decay+incr)

Figure 7 depicts (part of) a resulting simulation trace. Again, the upper part of the
figure shows the state properties that do not contain real numbers. Although only a
selection of state properties was depicted, the picture clearly shows the overall behaviour

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

14

of the ants: they all succeed in finding food, and (after a while) in bringing it back to the
nest location. In the lower part, the state properties that involve real numbers are shown,
which is in this case the different instantiations of state property pheromones_at_E1(X),
indicating the amount of pheromones at edge E1. For example, from time point 1 to 7 this
amount is 0.0. At time point 8, the amount increases to about 20 (apparently, some ants
have crossed the edge, while dropping pheromones). After time point 8, the amount
decreases, due to decay.

Fig. 7. Example simulation trace of an ant colony.

Although the above examples are relatively simple, they demonstrate the power of
LEADSTO to combine (real-valued) quantitative concepts with (conceptual) qualitative
concepts. Thus, Figure 3, 5 and 7 show some easy to read (important for the
communication with the domain expert), compact, and executable representations of the
dynamics in various domains. Moreover, the examples demonstrate the power of
conceptual modelling based on highly abstract process descriptions. In less than 3 pages
of code, the global dynamics of the examples are defined in enough detail to yield an
executable specification. In general, such specifications take only a couple of days to
construct, making the LEADSTO approach valuable for proof-of-concept simulations.

4. Tools

In this section, the LEADSTO software environment is presenteda. This environment
consists of two programs: the Property Editor (a graphical editor for constructing and
editing LEADSTO specifications) and the Simulation Tool (for performing simulations of
LEADSTO specifications, generating data-files containing traces for further analysis, and

a The software can be downloaded from: http://www.cs.vu.nl/~wai/TTL.

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

15

showing traces). Although the syntax of LEADSTO has already been introduced in
Section 2, the LEADSTO software environment uses a slightly different representation.
Section 4.1 describes this representation in detail. Next, Section 4.2 introduces the
Property Editor and Section 4.3 deals with the Simulation Tool. Section 4.4 describes the
algorithm used to generate simulations. Finally, Section 4.5 provides some
implementation details and discusses possible improvements for the future.

4.1. LEADSTO Language

This section describes the syntactic representation of LEADSTO specifications, as used
within the software environment. Moreover, some additional constructs are introduced,
that can be used when performing simulation.

Variables. The language uses typed variables in various constructs. A variable is
represented as <Var-Name>’:’<Sort>.

Sorts. Sorts may be defined as a set of instances that may be specified:
‘sortdef(‘<Sort-Name>’,[‘<Terms>’])’, where

<Terms> := <Term>{‘,’<Term>}*

There are also built-in sorts such as integer, real, and ranges of integers represented as, for
example, between(2,10).

Atoms. Atoms may be terms built up from names with argument lists where each
argument must be a term or a variable, for example: belief(x:AGENT, food_present).

LEADSTO rules. LEADSTO rules are introduced in Section 2. They are represented as:
‘leadsto([‘<Vars>’],‘<Antecedent-Formula>’,‘<Consequent-Formula>’,‘<Delay>’)’, where

<Delay> := ‘efgh(‘<E-Range>’,‘<F-Range>’,‘<G-Range>’,‘<H-Range>’)’
b

<Vars> := [<Variable>{‘,’<Variable>}*]

For example, α →→0, 0, 1, 1 β is represented as leadsto([], alfa, beta, efgh(0,0,1,1)). Variables
occurring in LEADSTO rules must be explicitly declared as <Variable> entries.

Formulae. LEADSTO rules contain formulae. The current implementation allows
conjunctions of atoms or negated atoms and universal quantification over typed variables.
Some variables are global, encompassing the whole rule. Other - local - variables are part
of universal quantification of some conjunction. The first kind of variables may be of
infinite types. Currently, local variables must be of finite types. Some restrictions that
are currently applied – such as not allowing disjunction in the antecedents of LEADSTO
rules – will be removed in a next version. This will have no effect on the performance of
the algorithm discussed in Section 4.4, but will make the details of the algorithm more
complex. Other restrictions with respect to variables of infinite type will remain.

Time/Range. Time and Range values occurring in LEADSTO rules and
holds_during_interval constructs may be any number or expression evaluating to a number.

b The reason for grouping the delay is to make it easier to use delay constants.

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

16

Fig. 8. The LEADSTO property editor

Constants. Constants may be defined using the following construct:
‘constant(‘<Name>’,‘<Value>’)’
A constant(C1, a(1)) entry in a specification will lead to C1 being substituted by a(1)
everywhere in the specification.

Intervals. During simulation, some atom values will be derived from LEADSTO rules.
Other atoms are not defined by rules but represent constant values of atoms over a certain
time range (see Section 2.1). They are expressed as follows:
‘holds_during_interval([‘<Vars>’],‘<Range>’,‘<LiteralConjunction>’)’
In a similar manner, periodically reoccurring constant values are represented as follows:
‘holds_periodically([‘<Vars>’],‘<Range>’,‘<Period>’,‘<LiteralConjunction>’)’, where

<Range> := ‘range(‘<Start-Time>’,‘<End-Time>’)’

<Vars> := [<Variable>{‘,’<Variable>}*]

<Period> : an expression or constant or variable representing a number.
<LiteralConjunction> := <Literal> | ‘and(‘<Literals>’)’

<Literals> := <Literal>{‘,’<Literal>}+

<Literal> := <Atom> | {‘not(‘<Atom>’)’}

For example, an entry holds_during_interval([X:between(1,2)], range(10,20), a(X)) makes a(1)
and a(2) true in the time range (10,20). Likewise, an entry holds_periodically([], range(0,1),

10, and(p,q)) makes p and q true in time ranges (0,1), (10,11), (20,21), and so on.

Simulation range. The time range over which the simulation must be run is expressed by
means of the constructs ’start_time(‘<Time>’)’ and ’end_time(‘<Time>’)’.

Visualisation of Traces. The construct ’display(‘<Tag-Name>’,‘<Property>’)’ is used to
specify details of how to display the traces. The <Tag-Name> argument makes it possible
to define multiple views of a trace. The active view may be specified from within the
User Interface of the Simulation Tool. A number of properties may be specified, for
showing or hiding certain atoms, for sorting atoms, for displaying atoms containing
numbers within a graph (such as in Figure 5 and 7, lower part), and so on.

4.2. Property Editor

The Property Editor provides a user-
friendly way of building and editing
LEADSTO specifications. It was designed
in particular for laymen and students. The
tool has been used successfully by students
with no computer science background and
by users with little computer experience.
By means of graphical manipulation and
filling in of forms a LEADSTO
specification may be constructed. The end
result is a saved LEADSTO specification

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

17

file, containing entries discussed in section 4.1. Figure 8 gives an example of how
LEADSTO specifications are presented and may be edited with the Property Editor. This
screenshot corresponds to the specification described in Section 3.1.

4.3. Simulation Tool

Figure 9 gives an overview of the Simulation Tool and its interaction with the LEADSTO
Property Editor. The bold rectangular borders define the separate tools. The lines with
arrows represent data transport; the dashed arrows represent control.

Fig. 9. Simulation tool architecture

The Property Editor is used to generate and store LEADSTO specification files. The
Simulation Tool loads these specification files. The overall control of the Simulation
Tool is handled by the Control-GUI component. The Simulation Tool can perform the
following activities:

• Loading LEADSTO specifications, performing a simulation and displaying the
result.

• Loading and displaying existing traces (without performing simulation).
• Adjusting the visualisation of traces.

Loading and simulating a LEADSTO specification is handled in four steps:

Trace Files

Internal
Trace Storage

Trace Visualisation

GUI

Trace Loader

Control

GUI

LEADSTO
Property Editor

Simulation Tool

Intermediate code generator /
initialisation

Runtime System

LEADSTO
Specification Files

LEADSTO specification
loader

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

18

1. The Specification Loader loads the specification.
2. The Intermediate Code Generator initialises the trace situation with values

defined by holds_during_interval and holds_periodically entries in the specification.
The LEADSTO rules are preprocessed: constants are substituted, universal
quantifications are expanded and the rules are partially compiled into Prolog
calls.

3. The actual simulation is performed by the Runtime System. This is the part that
contains the algorithm, discussed in the next section.

4. At the end of a simulation the result is stored internally by the Internal Trace
Storage component. The result can be saved as a trace file containing the
evolution over time of truth values of all atoms occurring in the simulation, and
will be visualised by the Trace Visualisation GUI. In principle, traces are three-
valued, using the truth values true, false, and unknown. Saved trace files can be
inspected later by the simulation tool and can be used by other tools, e.g., for
automated analysis.

Note that visualisation of traces is integrated into the Simulation Tool through the Trace
Visualisation GUI component. It is possible to select what atoms must be shown and in
what order (sorting). Figure 3, 5 and 7 are examples of the visualisation of the result of a
simulation.

4.4. Simulation Engine Algorithm

In this section a sketch of the simulation algorithm is given. The core of the semantics is
determined by the LEADSTO rules, for example leadsto(alpha, beta, efgh(e, f, g, h)) or (in
the notation of Section 2) α →→e, f, g, h β. The state properties α, β are internally
normalised. Currently, only state properties that can be simplified to conjunctions of
literals are allowed.

Restrictions on delays. The parameters g and h are time intervals, they must be >= 0.
The algorithm allows only causal rules, e,f >= 0. Allowing e,f < 0 would lead to non-
causal behaviour (any trace situation could have an effect arbitrarily in the past) and an
awkward simulation algorithm. We also restrict ourselves to rules with e + h > 0. The
causal nature of the semantics of LEADSTO rules results in a straightforward algorithm:
at each time point, a bound part of the past of the trace (the maximum of all g values of
all rules) determines the values of a bound range of the future trace (extending at most
into the future the maximum of f + h over all LEADSTO rules).

Outline of the algorithm. First all holds_during_interval and holds_periodically entries are
handled by setting the ranges of atoms according to their definition. Next, for the
algorithm a time variable HandledTime defining an invariant is introduced: this is a time
point for which all LEADSTO rules have been dealt with for all α values in time intervals
up to and including the interval [HandledTime – g, HandledTime). This implies that for any
such interval, for any LEADSTO rule, if α holds, all atoms in the β conjunction have

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

19

been set in an interval of length h, with a delay between e and f. The idea is to propagate
HandledTime until HandledTime >= EndTimec via the following steps:

1. At a certain HandledTime, a value for NextTime is calculated. This will be the first
time after HandledTime on which firing of a LEADSTO rule with its g-interval
(see Figure 1) extending past HandledTime may have an effect. The time
increment will be at least as big as the minimum of e + h over all LEADSTO
rules, which is a constant value > 0 as we required e + h > 0. Because we
maintain information for each rule regarding up to which antecedent time they
have been dealt with, NextTime will often lie further in the future than the
minimum of e + h. (Allowing e + h = 0 would complicate the algorithm as we
would need to apply some satisfiability solver algorithm).

2. An (optional) Closed World Assumption is performed for all selected atoms in
the range [HandledTime, NextTime), i.e., all unknown atoms in this range are made
false.

3. All LEADSTO rules are applied for which the range of their antecedent ends
before or overlaps with NextTime. In this step we use Prolog unification for the
variables occurring in the antecedent and backtracking over all time intervals
overlapping with the range [HandledTime, NextTime) matching antecedent literals.
As mentioned before, we only allow variables of infinite type within one
universal quantification over whole LEADSTO rules, so that Prolog (with its
unification and backtracking) can deal with themd. The procedure here is
somewhat more complex than Prolog resolution, because while finding
matching intervals in the conjunction, an overall interval within which all
(negated) atoms of the antecedent hold needs to be maintained.

4. Set HandledTime := NextTime.
5. Continue with step 1 until HandledTime >= EndTime.

4.5. Implementation Details

The complexity of the current algorithm is proportional to the number of LEADSTO
rules in the specification, to the number of incremental time steps of the algorithm (which
is at most equal to the length of the simulation divided by the minimum of e + h over all
LEADSTO rules) and (at most) to the number of matching antecedent atoms per
LEADSTO rule (limited by the number of atoms set during the simulation). A number of
optimizations already improve the performance, such as only considering antecedent
atoms that have matching values in the [HandledTime, NextTime) time range and not
considering LEADSTO rules that have been tested to not fire until some time in the
future.

c EndTime is the time up to which the simulation should be run.
d Other quantification operations over finite types are allowed, but LEADSTO rules containing such
quantifications will have those quantifications expanded.

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

20

The software was written in SWI-Prolog/XPCE, and consists of approximately 20000
lines of code. The approach for the design and implementation has been to first focus on
a complete implementation that is easily adaptable, with acceptable performance for the
current users. For an impression of the performance: the simulation of Section 3.1 took
two seconds on a regular Personal Computer (processor: 2.2 GHz, memory: 1GB RAM).
More complex LEADSTO simulations have been created that take about half an hour to
run. For example: one simulation with 170 LEADSTO rules, 2000 time steps, with 15000
atoms set, took 45 minutes.

There is room for further performance improvement of the algorithm. One possible
improvement is to increase the time increment NextTime – HandledTime introduced in the
algorithm above. Global analysis of dependency of LEADSTO rules should improve the
performance, for instance by trying to eliminate simple rules with small values of their e

+ h parameters. Furthermore, the LEADSTO language is being extended with constructs
for probabilistic rules, and with constructs for systematically generating traces of
LEADSTO specifications for a range of parameters.

5. Related Work

In the literature, a number of modelling approaches exist that have similarities to the
approach discussed in this paper. Firstly, there is the family of approaches based on
differential and difference equations3, 8, 9. In these approaches, to simulate processes by
mathematical means, difference equations are used, for example, of the form: ∆x = f(x) ∆t

or x(t + ∆t) = x(t) + f(x(t)) ∆t. This can be modelled in the LEADSTO language as follows
(where d is ∆t): has_value(x, v) →→d, d, d, d has_value(x, v+f(v)*d). This shows how the
LEADSTO modelling language subsumes modelling approaches based on difference
equations. In addition to those approaches the LEADSTO language allows to express
qualitiative and logical aspects.

Another family of modelling approaches, among which approaches based on
Executable Temporal Logic1, 5, 6, 7, 14, 15, 16, 17, such as METATEM4, 13, is based on temporal
logic formulae of the form ϕ & χ � ψ, where ϕ is a past formula, χ a present formula
and ψ a future formula. In comparison to this format, the LEADSTO format is more
expressive in the sense that it allows order-sorted predicate logic for state properties, and
allows one to express quantitative aspects. Moreover, the explicitly expressed timing
parameters (by real numbers) go beyond Executable Temporal Logic and METATEM,
which use dicrete time. On the other hand, within some of these approaches it is allowed
to refer to past states at different points in time, and thus to model more complex
relationships over time. For the LEADSTO language the choice has been made to model
only the basic mechanisms of a process (e.g., the direct causal relations), like in
modelling approaches based on difference equations and not the more complex ones, but
still allowing to express the timing by real numbers.

The Duration Calculus23 is a modal logic for describing and reasoning about the real-
time behaviour of dynamic systems, where states change over time and are represented
by functions from time (reals) to the Boolean values (0 and 1). It is an extension of

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

21

Interval Temporal Logic24, but with continuous time, and uses integrated durations of
states as interval temporal variables. Assuming finite variability of state functions (i.e.,
between any two time points only a finite number of state changes), the axioms and rules
of Duration Calculus constitute a complete logic (relative to Interval Temporal Logic). A
number of interesting tools have been created around (subsets of) Duration Calculus, see,
e.g., the work of Pandya25 for information on model checking duration calculus formulae.
Duration Calculus itself is not directly used for creating executable models, but
environments for executable code exist (e.g., PLC automata26) for which a semantics is
given in Duration Calculus.

Another family of modelling approaches based on causal relations is the class of
qualitative reasoning techniques2. The main idea of these approaches is to represent
quantitative knowledge in terms of abstract, qualitative concepts. Like the LEADSTO
language, qualitative reasoning can be used to perform simulation. A difference with
LEADSTO is that it is a purely qualitative approach, and that it is less expressive with
respect to temporal and quantitative aspects.

Also in the medical domain, modelling dynamics processes by means of causal
relations is very common. According to Greenland27, there are currently four major
classes of causal models in the health-sciences literature: causal diagrams, potential-
outcome models, structural equation models, and sufficient-component cause models.
However, as opposed to the work presented in this paper, these approaches only focus on
analysis, not on simulation.

Other work that relates qualitative modelling to quantitative modelling can be found
in28. This is interesting work that addresses in much depth the question how accurately
qualitative models can approximate quantitative models for the same phenomenon. A
number of interesting results have been found. A major difference between this work and
our work is that we did not (yet) address the question of how qualitative and quantitative
models compare, whereas they did address this question in an impressive manner.
Instead, our focus has been (up till now) on hybrid modelling, where aspects of a
phenomenon that have a quantitative character are modelled in a numerical manner, for
example, by differential or difference equations, aspects with a qualitative character are
modelled in a logical manner, and both are integrated, as extension of each other. The
question what can be done in cases that both would be possible for the same aspect has
not been addressed yet in our work. In future work this will be addressed, with the
reference as mentioned as a point of departure.

6. Conclusion and Future Work

This article presents the language and software environment LEADSTO that has been
developed especially to model and simulate dynamics in terms of both qualitative and
quantitative concepts. It is, for example, possible to model differential and difference
equations, and to combine those with discrete qualitative modelling approaches. Existing
languages are either not accompanied by a software environment that allows simulation

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

22

of the model, or do not allow the combination of both qualitative and quantitative
concepts.

The language LEADSTO is a declarative order-sorted temporal language extended
with quantitative notions (like integer, and real). Time is considered linear, continuous,
described by real values. Dynamics can be modelled in LEADSTO as evolution of states
over time; i.e., by modelling the direct temporal dependencies between state properties in
successive states. The use of durations in these temporal properties facilitates the
modelling of such temporal dependencies. In principle, accurately modelling the
dynamics of processes may require the use of a dense notion of time, instead of the more
practiced variants of discrete time. The problem in a dense time frame of having an
infinite number of time points between any two time points is tackled in LEADSTO by
the assumption of “Finite Variability”, see, Section 5 and, e.g., the work by Zhou et al.23.
Furthermore, main advantages of the LEADSTO language are that it is executable and
allows for graphical representation.

The software environment LEADSTO is developed especially for the language. It
features a dedicated property editor that proved its value for laymen, students and expert
users. The core component is the simulation tool that performs simulations of LEADSTO
specifications, generates data-files containing traces of simulation for further analysis,
and constructs visual representations of traces. The software environment offers many
predefined constructs (e.g., mathematical sorts and operations, intervals and operations
thereon).

The approach proved its value in a number of research projects in different domains.
It has been used to analyse and simulate behavioural dynamics of agents in cognitive
science (e.g., human reasoning29, trace conditioning19, diagnosis of eating disorders18),
biology (e.g., cell decision processes30, the dynamics of the heart31), social science (e.g.,
organisation dynamics including organisational change32, incident management33), and
artificial intelligence (e.g., design process34, ant colony behaviour20). As shown by these
examples, LEADSTO can be used to model phenomena from diverse perspectives. It has,
for example, been used to model cognitive processes from a psychological/BDI
perspective and from a physical/neurological perspective.

With respect to future work, it is planned to extend the LEADSTO environment at a
number of aspects. Besides some obvious next steps (such as further improving the
efficiency of the simulation algorithm and offering some more user-friendly options for
debugging), an interesting direction for further research, which is currently explored, is to
add non-determinism to LEADSTO specifications. This mainly implies allowing
disjunctions within the consequents of LEADSO rules, combined with a probability
distribution over the different possibilities. Another possible extension is to create a tool
that automatically converts LEADSTO specification to the graphical format depicted in
Figure 2.

Acknowledgements

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

23

The authors are grateful to Martine Delfos, Sander Los, Martijn Schut and Leon van der
Torre for their contributions to the simulation models described in Section 3, and to
Alexei Sharpanskykh for his contribution to some of the formal details.

References

1. Barringer, H., Fisher, M., Gabbay, D., Owens, R., and Reynolds, M. The Imperative Future:
Principles of Executable Temporal Logic, Research Studies Press Ltd. and John Wiley &
Sons, 1996.

2. Forbus, K.D. Qualitative process theory. Artificial Intelligence, volume 24, number 1-3, 1984,
pp. 85-168.

3. Port, R.F., and Gelder, T. van (eds.). Mind as Motion: Explorations in the Dynamics of
Cognition. MIT Press, Cambridge, Mass, 1995.

4. Fisher, M. METATEM: The Story so Far. In: Proceedings of the Third International Workshop
on Programming Multi-Agent Systems, ProMAS’03. Lecture Notes in Artificial Intelligence,
vol. 3862. Springer Verlag, 2005, pp. 3-22.

5. Fisher, M. (2005). Temporal Development Methods for Agent-Based Systems, Journal of
Autonomous Agents and Multi-Agent Systems, vol. 10, pp. 41-66.

6. Galton, A. (2003). Temporal Logic. Stanford Encyclopedia of Philosophy, URL:
http://plato.stanford.edu/entries/logic-temporal/#2.

7. Galton, A. (2006). Operators vs Arguments: The Ins and Outs of Reification. Synthese, vol.
150, 2006, pp. 415-441.

8. Kelso, J.A.S. (1995). Dynamic Patterns: the Self-Organisation of Brain and Behaviour. MIT
Press, Cambridge, Mass.

9. Ashby, W.R. (1952). Design for a Brain. Chapman & Hall, London. Revised edition 1960.
10. Meyer, J.J.Ch., and Treur, J. (volume eds.) Agent-based Defeasible Control in Dynamic

Environments. Series in Defeasible Reasoning and Uncertainty Management Systems (D.
Gabbay and Ph. Smets, series eds.), vol. 7. Kluwer Academic Publishers, 2002.

11. Manzano, M. Extensions of First Order Logic, Cambridge University Press, 1996.
12. Blamey, S. Partial Logic, in: D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical

Logic, Vol. III, 1-70, Reidel, Dordrecht, 1986.
13. Barringer, H., Fisher, M., Gabbay, D., Owens, R., and Reynolds, M. METATEM: A framework

for programming in temporal logic. In: Proceedings of the REX Workshop on Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness. Lecture Notes in
Computer Science, vol. 430. Springer Verlag, 1989, pp. 94-129.

14. Fisher, M. (1997). A Normal Form for Temporal Logics and its Applications in Theorem-
Proving and Execution. Journal of Logic and Computation, vol. 7, 1997, pp. 429-456.

15. Gabbay, D.M. (1989). The Declarative Past and Imperative Future: Executable Temporal
Logic for Interactive Systems. In B. Banieqbal, H. Barringer, and A. Pnueli, (eds),
Proceedings of the 1st Conference on Temporal Logic in Specification. Lecture Notes in
Computer Science, vol. 398. Springer Verlag, 1989, pp. 409-448.

16. Gabbay, D.M., Hodkinson, I., Reynolds, M. (1994). Temporal Logic: Mathematical and
Computational Aspects, Vol. 1. Clarendon Press, Oxford, 1994.

17. Hodkinson, I., and Reynolds, M. (2005). Separation - Past, Present and Future. In: We Will
Show Them: Essays in Honour of Dov Gabbay, Vol 2. S. Artemov, H. Barringer, A. S. d'Avila
Garcez, L. C. Lamb, and J. Woods (eds.), pp. 117-142, College Publications, 2005.

18. Bosse, T., Delfos, M.F., Jonker, C.M., and Treur, J. Analysis of Adaptive Dynamical Systems
for Eating Regulation Disorders. Proceedings of the 25th Annual Conference of the Cognitive
Science Society, CogSci 2003. Mahwah, NJ: Lawrence Erlbaum Associates, Inc., 2003, pp.

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

24

168-173. Extended version in: Simulation Journal: Transactions of the Society for Modeling
and Simulation International, volume 82, issue 3, 2006, pp. 159-171.

19. Bosse, T., Jonker, C.M., Los, S.A., Torre, L. van der, and Treur, J. Formalisation and Analysis
of the Temporal Dynamics of Conditioning. In: Mueller, J.P. and Zambonelli, F. (eds.),
Proceedings of the Sixth International Workshop on Agent-Oriented Software Engineering,
AOSE'05, pp. 157-168, 2005. Extended version will appear in: Cognitive Systems Research
Journal.

20. Bosse, T., Jonker, C.M., Schut, M.C., and Treur, J. Simulation and Analysis of Shared
Extended Mind. In: Davidsson, P., Gasser, L., Logan, B., and Takadama, K. (eds.), Proc. of
the Joint Workshop on Multi-Agent and Multi-Agent-Based Simulation, MAMABS'04. Lecture
Notes in AI, vol. 3415, Springer Verlag, 2005, pp. 248-264. Extended version in: Simulation
Journal: Transactions of the Society for Modeling and Simulation International, volume 81,
issue 9, 2005, pp. 719-732.

21. Delfos, M.F. Lost Figure: Treatment of Anorexia, Bulimia and Obesitas (in Dutch). Swets and
Zeitlinger Publishers, Lisse, 2002.

22. Machado, A. Learning the Temporal Dynamics of Behaviour. Psychological Review, vol. 104,
1997, pp. 241-265.

23. Zhou, C., Hoare, C.A.R., and Ravn, A.P. A Calculus of Durations, Information Processing
Letter, 40, 5, 1991, pp. 269-276.

24. Moszkowski, B., and Manna, Z. Reasoning in Interval Temporal Logic. In Clarke, E., and
Kozen, D., editors, Proceedings of the Workshop on Logics of Programs, volume 164 of
LNCS, pp. 371-382, Pittsburgh, PA, June 1983. Springer Verlag.

25. Pandya, P.K., Model checking CTL[DC]. In: Proceedings of TACAS 2001, Genova, LNCS
2031, Springer-Verlag, April 2001. Also as Technical Report TCS-00-PKP-2, Tata Institute of
Fundamental Research, Mumbai, 2000. http://www.tcs.tifr.res.in/~pandya/dcvalid103.html.

26. Dierks, H. PLC-automata: A new class of implementable real-time automata. In: M. Bertran
and T. Rus, editors, Transformation-Based Reactive Systems Development (ARTS'97), volume
1231 of Lecture Notes in Computer Science, pp. 111-125. Springer-Verlag, 1997.

27. Greenland, S., and Brumback, B.A. An overview of relations among causal modeling
methods. International Journal of Epidemiology, 31, pp. 1030-1037, 2002.

28. Berleant, D., and Kuipers, B. Qualitative and quantitative simulation: bridging the gap.
Artificial Intelligence Journal, vol. 95, issue 2, 1997, pp. 215-255.

29. Bosse, T., Jonker, C.M., and Treur, J. Reasoning by Assumption: Formalisation and Analysis
of Human Reasoning Traces. In: Mira, J., Alvarez, J.R. (eds.), Proc. of the First International
Work-conference on the Interplay between Natural and Artificial Computation, IWINAC'05.
Lecture Notes in Artificial Intelligence, vol. 3561. Springer Verlag, 2005, pp. 430-439.
Extended version in: Cognitive Science Journal, volume 30, issue 1, 2006, in press.

30. Jonker, C.M., Snoep, J.L., Treur, J., Westerhoff, H.V., and Wijngaards, W.C.A. Putting
Intentions into Cell Biochemistry: An Artificial Intelligence Perspective. Journal of
Theoretical Biology, vol. 214, 2002, pp. 105-134.

31. Bosse, T., Jonker, C.M., and Treur, J. Organisation Modelling for the Dynamics of Complex
Biological Processes. In: G. Lindemann, D. Moldt, M. Paolucci, B. Yu (eds.), Regulated
Agent-Based Social Systems, Proc. of the International Workshop on Regulated Agent-Based
Social Systems: Theories and Applications, RASTA'02. Lecture Notes in AI, vol. 2934.
Springer Verlag, 2004, pp. 92-112.

32. Hoogendoorn, M., Jonker, C.M., Schut, M., and Treur, J. Modelling the Organisation of
Organisational Change. In: Giorgini, P., and Winikoff, M., (eds.), Proceedings of the Sixth
International Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS'04),
2004, pp. 29-46.

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

25

33. Hoogendoorn, M., Jonker, C.M., Popova, V., Sharpaskykh, A., Xu, L. Formal Modelling and
Comparing of Disaster Plans. In: Carle, B., and Walle, B. van de, (eds.), Proceedings of the
Second International Conference on Information Systems for Crisis Response and
Management ISCRAM '05, 2005, pp. 97-107.

34. Bosse, T., Jonker, C.M., and Treur, J. Analysis of Design Process Dynamics. In: R. Lopez de
Mantaras, L. Saitta (eds.), Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI'04, 2004, pp. 293-297.

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

26

Appendix A. Simulation Model for Eating Regulation Example
LP1 (Eat-stimulus)
The first local property LP1 expresses that an eat norm N and an intermediate amount eaten E less than this
norm together lead to an eat stimulus. Formalisation:
∀E,N:REAL
intermediate_amount_eaten(E) and eat_norm(N) and E < N →→0,0,1,1 stimulus(eat)

LP2 (Not-eat-stimulus)
Local property LP2 expresses that an eat norm N and an intermediate amount eaten E higher than this norm
together lead to an non-eat stimulus. Formalisation:
∀E,N:REAL
intermediate_amount_eaten(E) and eat_norm(N) and E ≥ N →→0,0,1,1 stimulus(do_not_eat)

LP3 (Increase of amount eaten)
Local property LP3 expresses how an eat stimulus increases an intermediate amount eaten by additional energy
d (the energy value of what is eaten). Formalisation:
∀E:REAL
intermediate_amount_eaten(E) and stimulus(eat) →→0,0,1,1 intermediate_amount_eaten(E+d)

LP4 (Stabilizing amount eaten)
Local property LP4 expresses how a non-eat stimulus keeps the intermediate amount eaten the same.
Formalisation:
∀E:REAL
intermediate_amount_eaten(E) and stimulus(do_not_eat) →→0,0,1,1 intermediate_amount_eaten(E)

LP5 (Day amount eaten)
Local property LP5 expresses that the day amount eaten is the intermediate amount eaten at the end of the day.
Formalisation:
∀E:REAL
intermediate_amount_eaten(E) and time(24) →→0,0,1,1 day_amount_eaten(E)

LP6 (Weight through balance of amount eaten and energy used)
Local property LP6 expresses a simple mechanism of how weight is affected by the day balance of amount
eaten and energy used. Here γ is a fraction that specifies how energy leads to weight kilograms. Formalisation:
∀E1,E2,W:REAL
day_amount_eaten(E1) and day_used_energy(E2) and weight(W) →→0,0,1,25 weight(W + γ * (E1 – E2))

LP7 (Adaptation of amount to be eaten)
Local property LP7 expresses a simple (logistic) mechanism for the adaptation of the eat norm based on the day
amount of energy used. Here α is the adaptation speed, β is the fraction of E that is the limit of the adaptation;
normally β = 1. Formalisation:
∀E,N:REAL
day_used_energy(E) and eat_norm(N) and time(24) →→0,0,1,25 eat_norm(N + α * N * (1 - N/βE))

LP8 (Recent weight)
Local property LP8 expresses that if the current weight is W, then in the near future the recent weight will be
W. Formalisation:
∀W:REAL
weight(W) →→25,25,25,25 recent_weight(W)

LP9 (Indication of anorexia)
Local property LP9 expresses that if the difference between the current weight and the recent weight is more
than δ, then there is an indication that the patient has anorexia. Formalisation:
∀W1,W2:REAL
weight(W1) and recent_weight(W2) and W1-W2 > δ →→0,0,1,1 indication(anorexia)

LP10 (Indication of obesitas)
Local property LP10 expresses that if the difference between the recent weight and the current weight is more
than ε, then there is an indication that the patient has obesitas. Formalisation:
∀W1,W2:REAL
weight(W1) and recent_weight(W2) and W2-W1 > ε →→0,0,1,1 indication(obesitas)

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

27

Appendix B. Simulation Model for Conditioning Example
LP1 (Initialisation)
The first local property LP1 expresses the initialisation of the values for the timing nodes and the associative
links. Formalisation (for n ranging over [0,5]):
∀n:INTEGER
start →→0,0,1,1 X(n, 0) and W(n, 0)

LP2 (Activation of initial timing nodes)
Local property LP2 expresses the activation (and adaptation) of the 0th timing node. Immediately after the
occurrence of the warning stimulus (S1), this state has full strength. After that, its value decreases until the next
warning stimulus. Together with LP3, this property causes the spread of activation across the timing nodes.
Here, λ > 0 is a rate parameter that controls the speed of this spread of activation, and step is a constant indicating
the smallest time step in the simulation. For the simulation experiments described in this paper, λ was set to 10
and step was set to 0.05. Formalisation:
∀u,s:REAL
X(0, u) and S1(s) →→0,0,1,1 X(0, u*(1-λ*step)+s)

LP3 (Adaptation of timing nodes)
LP3 expresses the adaptation of the nth timing node (for n ranging over [1,5]), based on its own previous state
and the previous state of the n-1th timing node. Together with LP2, this property causes the spread of activation
across the timing nodes. Here, λ is a rate parameter that controls the speed of this spread of activation (see LP2).
Formalisation:
∀n:INTEGER ∀u0,u1:REAL
X(n, u1) and X(n-1, u0) →→0,0,1,1 X(n, u1+λ*(u0-u1)*step)

LP4 (Storage of timing nodes at moment of reinforcer)
LP4 is needed to store the value of the nth timing node at the moment of the occurrence of the imperative
stimulus (S2). These values are used later on by property LP6. Formalisation:
∀n:INTEGER ∀x:REAL
X(n, u) and S2(1.0) →→0,0,1,3 Xcopy(n, u)

LP5 (Extinction of associative links)
LP5 expresses the adaptation of the associative links during extinction, based on their own previous state and
the previous state of the corresponding timing node. Here, α is a learning rate parameter. Formalisation:
∀u,v:REAL ∀n:INTEGER
instage(ext) and X(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-α*u*step))

LP6 (Reinforcement of associative links)
LP6 expresses the adaptation of the associative links during reinforcement, based on their own previous state
and the previous state of Xcopy. Here, β is a learning rate parameter. Formalisation:
∀u,v:REAL ∀n:INTEGER
instage(reinf) and Xcopy(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-β*u*step) + β*u*step)

LP7 (Persistence of associative links)
LP7 expresses the persistence of the associative links at the moments that there is neither extinction nor
reinforcement. Formalisation:
∀v:REAL
instage(pers) and W(n, v) →→0,0,1,1 W(n, v)

LP8 (Response function)
LP8 calculates the response by adding the discriminative function of all states (i.e., their associative links * the
degree of activation of the corresponding state). Formalisation:
∀v1,v2,v3,v4,v5,u1,u2,u3,u4,u5:REAL
W(1, v1) and W(2, v2) and W(3, v3) and W(4, v4) and W(5, v5) and X(1, u1) and X(2, u2) and X(3, u3) and X(4, u4) and X(5, u5) →→0,0,1,1
R(v1*u1 + v2*u2 + v3*u3 + v4*u4 + v5*u5)

LP9 (Initialisation of stage pers)
LP9 expresses that the initial stage of the process is pers. Formalisation:
start →→0,0,1,1 instage(pers)

LP10 (Transition to stage ext)
LP10 expresses that the process switches to stage ext when a warning stimulus occurs. Formalisation:
S1(1.0) →→0,0,1,1 instage(ext)

LP11 (Persistence of stage ext)

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

28

LP11 expresses that the process persists in stage ext as long as no imperative stimulus occurs. Formalisation:
instage(ext) and S2(0.0) →→0,0,1,1 instage(ext)

LP12 (Transition to stage reinf and pers)
LP12 expresses that the process first switches to stage reinf for a while, and then to stage pers when an imperative
stimulus occurs. Notice that LP12a and LP12b must have different timing parameters to make sure both stages
do not occur simultaneously. Formalisation:
S2(1.0) →→0,0,1,3 instage(reinf) (LP12a)
S2(1.0) →→3,3,1,1 instage(pers) (LP12b)

LP13 (Persistence of stage pers)
LP13 expresses that the process persists in stage pers as long as no warning stimulus occurs. Formalisation:
instage(pers) and S1(0.0) →→0,0,1,1 instage(pers)

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

29

Appendix C. Simulation Model for Ants Example
LP1 (Initialisation of Pheromones)
This property expresses that at the start of the simulation, at all edges there are 0 pheromones. Formalisation:
start →→0,0,1,1 pheromones_at(E1, 0.0) and pheromones_at(E2, 0.0) and pheromones_at(E3, 0.0) and pheromones_at(E4, 0.0) and
pheromones_at(E5, 0.0) and pheromones_at(E6, 0.0) and pheromones_at(E7, 0.0) and pheromones_at(E8, 0.0) and
pheromones_at(E9, 0.0) and pheromones_at(E10, 0.0)

LP2 (Initialisation of Ants)
This property expresses that at the start of the simulation, all ants are at location A. Formalisation:
start →→0,0,1,1 is_at_location_from(ant1, A, init) and is_at_location_from(ant2, A, init) and is_at_location_from(ant3, A, init)

LP3 (Initialisation of World)
These two properties model the ants world. The first property expresses which locations are connected to each
other, and via which edges they are connected. The second property expresses for each location how many
neighbours it has. Formalisation:
start →→0,0,1,1 connected_to_via(A, B, l1) and … and connected_to_via(D, H, l10)

start →→0,0,1,1 neighbours(A, 2) and … and neighbours(H, 3)

LP4 (Initialisation of Attractive Directions)
This property expresses for each ant and each location, which edge is most attractive for the ant at if it arrives at
that location. This criterion can be used in case an ant arrives at a location where there are two edges with an
equal amount of pheromones. Formalisation:
start →→0,0,1,1 attractive_direction_at(ant1, A, E1) and … and attractive_direction_at(ant3, E, E5)

LP5 (Selection of Edge)
These properties model the edge selection mechanism of the ants. For example, the first property expresses
that, when an ant observes that it is at location A, and both edges connected to location A have the same
number of pheromones, then the ant goes to its attractive direction. Formalisation:
∀a:ANT ∀l1,l2:LOCATION ∀e0,e1,e2:EDGE ∀i1,i2:REAL
observes(a, is_at_location_from(A, e0)) and attractive_direction_at(a, A, e1) and connected_to_via(A, l1, e1) and
observes(a, pheromones_at(e1, i1)) and connected_to_via(A, l2, e2) and observes(a, pheromones_at(e2, i2)) and e1 \= e2
and i1 = i2 →→0,0,1,1 to_be_performed(a, go_to_edge_from_to(e1, A, l1))

∀a:ANT ∀l1,l2:LOCATION ∀e0,e1,e2:EDGE ∀i1,i2:REAL
observes(a, is_at_location_from(A, e0)) and connected_to_via(A, l1, e1) and observes(a, pheromones_at(e1, i1)) and
connected_to_via(A, l2, e2) and observes(a, pheromones_at(e2, i2)) and i1 > i2 →→0,0,1,1
to_be_performed(a, go_to_edge_from_to(e1, A, l1))

∀a:ANT ∀l1,l2:LOCATION ∀e0,e1,e2:EDGE ∀i1,i2:REAL
observes(a, is_at_location_from(F, e0)) and connected_to_via(F, l1, e1) and observes(a, pheromones_at(e1, i1)) and
connected_to_via(F, l2, e2) and observes(a, pheromones_at(e2, i2)) and i1 > i2 →→0,0,1,1
to_be_performed(a, go_to_edge_from_to(e1, F, l1))

∀a:ANT ∀l,l1:LOCATION ∀e0,e1:EDGE
observes(a, is_at_location_from(l, e0)) and neighbours(l, 2) and connected_to_via(l, l1, e1) and e0 ≠ e1 and l ≠ A and l ≠ F →→0,0,1,1

to_be_performed(a, go_to_edge_from_to(e1, l, l1))

∀a:ANT ∀l,l1,l2:LOCATION ∀e0,e1,e2:EDGE
observes(a, is_at_location_from(l, e0)) and attractive_direction_at(a, l, e1) and neighbours(l, 3) and connected_to_via(l, l1, e1) and
observes(a, pheromones_at(e1, 0.0)) and connected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, 0.0)) and e0 ≠ e1 and
e0 ≠ e2 and e1 ≠ e2 →→0,0,1,1 to_be_performed(a, go_to_edge_from_to(e1, l, l1))

∀a:ANT ∀l,l1,l2:LOCATION ∀e0,e1,e2:EDGE ∀i1,i2:REAL
observes(a, is_at_location_from(l, e0)) and neighbours(l, 3) and connected_to_via(l, l1, e1) and observes(a, pheromones_at(e1, i1))
and connected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, i2)) and e0 ≠ e1 and e0 ≠ e2 and e1 ≠ e2 and i1 > i2 →→0,0,1,1
to_be_performed(a, go_to_edge_from_to(e1, l1))

LP6 (Arrival at Edge)
This property expresses that, if an ant goes to an edge e from a location l to a location l1, then later the ant will
be at this edge e. Formalisation:
∀a:ANT ∀e:EDGE ∀l,l1:LOCATION
to_be_performed(a, go_to_edge_from_to(e, l, l1)) →→0,0,1,1 is_at_edge_from_to(a, e, l, l1)

LP7 (Observation of Edge)
This property expresses that, if an ant is at a certain edge e, going from a location l to a location l1, then it will
observe this. Formalisation:
∀a:ANT ∀e:EDGE ∀l,l1:LOCATION
is_at_edge_from_to(a, e, l, l1) →→0,0,1,1 observes(a, is_at_edge_from_to(e, l, l1))

LP8 (Movement to Location)

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, and Jan Treur

30

This property expresses that, if an ant observes that it is at an edge e from a location l to a location l1, then it
will go to location l1. Formalisation:
∀a:ANT ∀e:EDGE ∀l,l1:LOCATION
observes(a, is_at_edge_from_to(e, l, l1)) →→0,0,1,1 to_be_performed(a, go_to_location_from(l1, e))

LP9 (Dropping of Pheromones)
This property expresses that, if an ant observes that it is at an edge e from a location l to a location l1, then it
will drop pheromones at this edge e. Formalisation:
∀a:ANT ∀e:EDGE ∀l,l1:LOCATION
observes(a, is_at_edge_from_to(e, l, l1)) →→0,0,1,1 to_be_performed(a, drop_pheromones_at_edge_from(e, l))

LP10 (Arrival at Location)
This property expresses that, if an ant goes to a location l from an edge e, then later it will be at this location l.
Formalisation:
∀a:ANT ∀e:EDGE ∀l:LOCATION
to_be_performed(a, go_to_location_from(l, e)) →→0,0,1,1 is_at_location_from(a, l, e)

LP11 (Observation of Location)
This property expresses that, if an ant is at a certain location l, then it will observe this. Formalisation:
∀a:ANT ∀e:EDGE ∀l:LOCATION
is_at_location_from(a, l, e) →→0,0,1,1 observes(a, is_at_location_from(l, e))

LP12 (Observation of Pheromones)
This property expresses that, if an ant is at a certain location l, then it will observe the number of pheromones
present at all edges that are connected to location l. Formalisation:
∀a:ANT ∀e0,e1:EDGE ∀l,l1:LOCATION ∀i:REAL
is_at_location_from(a, l, e0) and connected_to_via(l, l1, e1) and pheromones_at(e1, i) →→0,0,1,1 observes(a, pheromones_at(e1, i))

LP13 (Increment of Pheromones)
These properties model the increment of the number of pheromones at an edge as a result of ants dropping
pheromones. For example, the first property expresses that, if an ant drops pheromones at edge e, and no other
ants drop pheromones at this edge, then the new number of pheromones at e becomes i*decay+incr. Here, i is
the old number of pheromones, decay is the decay factor, and incr is the amount of pheromones dropped.
Formalisation:
∀a1,a2,a3:ANT ∀e:EDGE ∀l1:LOCATION ∀i:REAL
to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and [∀l2:LOCATION not to_be_performed(a2,
drop_pheromones_at_edge_from(e, l2))] and [∀l3:LOCATION not to_be_performed(a3, drop_pheromones_at_edge_from(e, l3))]
and a1 ≠ a2 and a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i) →→0,0,1,1 pheromones_at(e, i*decay+incr)

∀a1,a2,a3:ANT ∀e:EDGE ∀l1,l2:LOCATION ∀i:REAL
to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and to_be_performed(a2, drop_pheromones_at_edge_from(e, l2)) and
[∀l3:LOCATION not to_be_performed(a3, drop_pheromones_at_edge_from(e, l3))] and a1 ≠ a2 and a1 ≠ a3 and a2 ≠ a3 and
pheromones_at(e, i) →→0,0,1,1 pheromones_at(e, i*decay+incr+incr)

∀a1,a2,a3:ANT ∀e:EDGE ∀l1,l2,l3:LOCATION ∀i:REAL
to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and to_be_performed(a2, drop_pheromones_at_edge_from(e, l2)) and
to_be_performed(a3, drop_pheromones_at_edge_from(e, l3)) and a1 ≠ a2 and a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i) →→0,0,1,1
pheromones_at(e, i*decay+incr+incr+incr)

LP14 (Collecting of Food)
This property expresses that, if an ant observes that it is at location F (the food source), then it will pick up
some food. Formalisation:
∀a:ANT ∀e:EDGE ∀l:LOCATION
observes(a, is_at_location_from(l, e)) and food_location(l) →→0,0,1,1 to_be_performed(a, pick_up_food)

LP15 (Carrying of Food)
This property expresses that, if an ant picks up food, then as a result it will be carrying food. Formalisation:
∀a:ANT
to_be_performed(a, pick_up_food) →→0,0,1,1 is_carrying_food(a)

LP16 (Dropping of Food)
This property expresses that, if an ant is carrying food, and observes that it is at location A (the nest), then the
ant will drop the food. Formalisation:
∀a:ANT ∀e:EDGE ∀l:LOCATION
observes(a, is_at_location_from(l, e)) and nest_location(l) and is_carrying_food(a) →→0,0,1,1 to_be_performed(a, drop_food)

LP17 (Persistence of Food)
This property expresses that, as long as an ant that is carrying food does not drop the food, it will keep on
carrying it. Formalisation:

 A Language and Environment for Analysis of Dynamics by SimulaTiOn

31

∀a:ANT
is_carrying_food(a) and not to_be_performed(a, drop_food) →→0,0,1,1 is_carrying_food(a)

LP18 (Decay of Pheromones)
This property expresses that, if the old amount of pheromones at an edge is i, and there is no ant dropping any
pheromones at this edge, then the new amount of pheromones at e will be i*decay. Formalisation:
∀e:EDGE ∀i:REAL
pheromones_at(e, i) and [∀a:ANT ∀l:LOCATION not to_be_performed(a, drop_pheromones_at_edge_from(e, l))] →→0,0,1,1
pheromones_at(e, i*decay)

